Symmetry Groups, Quantum Mechanics and Generalized Hermite Functions

نویسندگان

چکیده

This is a review paper on the generalization of Euclidean as well pseudo-Euclidean groups interest in quantum mechanics. The Weyl–Heisenberg groups, Hn, together with Euclidean, En, and Ep,q, are two families particular due to their applications physics. In present manuscript, we show that, together, they give rise more general family Kp,q, that contain Hp,q Ep,q subgroups. It noteworthy properties such self-similarity invariance respect orientation axes properly included structure Kp,q. We construct generalized Hermite functions multidimensional spaces, which serve orthogonal bases Hilbert spaces supporting unitary irreducible representations type By extending these obtain Kp,q rigged (Gelfand triplets). study transformation laws under Fourier transform.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Generalized Functions in Adelic Quantum Mechanics

Some aspects of adelic generalized functions, as linear continuous functionals on the space of Schwartz-Bruhat functions, are considered. The importance of adelic generalized functions in adelic quantum mechanics is demonstrated. In particular, adelic product formula for Gauss integrals is derived, and the connection between the functional relation for the Riemann zeta function and quantum stat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2022

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math10091448